The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.
نویسندگان
چکیده
The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane.
منابع مشابه
The lantibiotic nisin induces transmembrane movement of a fluorescent phospholipid.
Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid (1-acyl-2-(6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)amino]caproyl)-sn-glycero-3-phosphocholine) in the inner leaflet of the bilayer were used. Nisin-induced...
متن کاملLantibiotic Immunity: Inhibition of Nisin Mediated Pore Formation by NisI
Nisin, a 3.4 kDa antimicrobial peptide produced by some Lactococcus lactis strains is the most prominent member of the lantibiotic family. Nisin can inhibit cell growth and penetrates the target Gram-positive bacterial membrane by binding to Lipid II, an essential cell wall synthesis precursor. The assembled nisin-Lipid II complex forms pores in the target membrane. To gain immunity against its...
متن کاملMechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles.
Nisin is a cationic polycyclic bacteriocin secreted by some lactic acid bacteria. Nisin has previously been shown to permeabilize liposomes. The interaction of nisin was analyzed with liposomes prepared of the zwitterionic phosphatidylcholine (PC) and the anionic phosphatidylglycerol (PG). Nisin induces the release of 6-carboxyfluorescein and other small anionic fluorescent dyes from PC liposom...
متن کاملMechanism of Inhibition of Bacillus anthracis Spore Outgrowth by the Lantibiotic Nisin
The lantibiotic nisin inhibits growth of vegetative Gram-positive bacteria by binding to lipid II, which disrupts cell wall biosynthesis and facilitates pore formation. Nisin also inhibits the outgrowth of bacterial spores, including spores of Bacillus anthracis, whose structural and biochemical properties are fundamentally different from those of vegetative bacteria. The molecular basis of nis...
متن کاملLipid II-mediated pore formation by the peptide antibiotic nisin: a black lipid membrane study.
The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2015